quinta-feira, 27 de novembro de 2008

Neurônios são usados para construir circuito de neurocomputador


"No cérebro, os neurônios fazem cálculos maravilhosamente num instante, mas se você os coloca sobre uma placa de vidro eles se tornam preguiçosos e 'estúpidos' - ou seja, seu repertório de respostas é muito limitado."

É assim que começa a apresentação do trabalho da equipe de Elisha Moses, do Instituto de Ciências Weizman, em Israel. "Nossa principal questão é como as conexões entre os neurônios podem ser manipuladas para melhorar sua capacidade computacional," afirma o grupo.

Neurocomputador

Os cientistas não estão exagerando: individualmente, um neurônio precisa "descansar" um longo tempo depois de disparar um sinal, até que possa se tornar capaz de disparar o próximo. Isso torna quase impraticável sua utilização em conjunto com sistemas eletrônicos, que são muito mais rápidos.

Agora, Ofer Feinerman e Assaf Rotem, do grupo de Moses, deram um passo importante: eles usaram neurônios para construir portas lógicas - os blocos básicos de um circuito eletrônico - que funcionam de maneira constante e confiável. É o primeiro elemento de um futuro neurocomputador.

Na prática, os pesquisadores substituíram os semicondutores e fios de um circuito eletrônico tradicional por neurônios, que disparam seus sinais elétricos para transferir as informações entre as diversas partes do circuito.

Fios biológicos de neurônios

Para isso, eles construíram minúsculos canais sobre uma placa de vidro. A placa de vidro, à exceção dos canais escavados, é recoberta por um material que repele as células. Isto força os neurônios a cresceram praticamente enfileirados, formando conexões entre as partes do circuito como se fossem "fios biológicos."

Porta lógica biológica

O circuito de demonstração é uma porta lógica AND, que produz uma saída apenas quando recebe duas entradas iguais. A porta lógica biológica tem o formato de uma ferradura, formada por neurônios, contendo um bloqueador iônico para impedir que os sinais elétricos passem de uma perna à outra da ferradura.

Entre os braços da ferradura fica uma outra ilha de neurônios. Unindo a ferradura à ilha, duas finas pontes de axônios permitem que os sinais elétricos sejam trocados entre as áreas.

Quando estimulados por uma pequena dose de um composto químicos, os neurônios começam a enviar sinais através do biocircuito. Alterando a largura das pontes, os pesquisadores controlaram a intensidade dos sinais que passam da ilha para os braços da ferradura, construindo sua porta AND - os neurônios na ilha somente produzem uma saída depois de receber sinais das duas pernas da ferradura.

Próteses robotizadas

Segundo os pesquisadores, seus neurônios de laboratório atingiram até 95% de aproveitamento, contra os 40% normalmente observados, o que abre novos horizontes para o desenvolvimento de neurocomputadores mais eficientes.

Agora eles vão trabalhar no desenvolvimento de novas portas lógicas, que permitam a fabricação de circuitos biológicos mais complexos. No futuro, componentes desse tipo poderão permitir o interfaceamento entre circuitos eletrônicos e o corpo humano, para o controle de próteses robotizadas, e entre neurocomputadores biológicos e computadores eletrônicos.


Bibliografia:
Reliable neuronal logic devices from patterned hippocampal cultures
Ofer Feinerman, Assaf Rotem, Elisha Moses
Nature Physics
October 2008
Vol.: Advance online publication
DOI: 10.1038/nphys1099

segunda-feira, 3 de novembro de 2008

Transistores que funcionam com um único elétron derrubam consumo de equipamentos



Os circuitos eletrônicos, do controle remoto da sua TV até o processador do seu computador, funcionam graças ao controle preciso do fluxo dos elétrons - é por isso que eles são "eletrônicos." Mais precisamente, eles funcionam graças ao controle preciso do fluxo de bilhões de elétrons de cada vez.

E que tal se fosse possível construir circuitos nos quais cada operação pudesse ser feita por um único elétron? Além da extrema miniaturização, seria possível construir circuitos eletrônicos com um consumo de energia tão pequeno que uma bateria de lítio seria capaz de alimentá-los não por horas, mas por meses e até anos.

Transistores de elétron único

Os cientistas já conseguiram construir transistores de elétron único e até mesmo um transistor mecanico adicionado por um unico eletron.

O problema é que esses transistores somente haviam sido demonstrados em escala de laboratório e ainda não havia um meio de levá-los para a linha de produção, para que pudessem ser fabricados em escala industrial.

Escala industrial

Agora, pesquisadores da Universidade do Texas, nos Estados Unidos, desenvolveram um processo que permite que componentes de elétron único sejam fabricados com a mesma tecnologia hoje utilizada para a fabricação dos chips, a chamada técnica CMOS.

De uma única vez, os pesquisadores resolveram os três problemas básicos que impediam a utilização prática desses componentes de alta eficiência e baixíssimo consumo de energia. Com a nova técnica, os transistores de elétron único podem ser fabricados com os mesmos processos e equipamentos hoje utilizados pela indústria eletrônica, podem ser montados de forma paralela, e podem ser construídos em grandes quantidades ao mesmo tempo.

Os novos componentes eletrônicos mostraram-se totalmente funcionais em temperatura ambiente, o que deverá facilitar sua adoção pela indústria.


Bibliografia:
CMOS-compatible fabrication of room-temperature single-electron devices
Vishva Ray, Ramkumar Subramanian, Pradeep Bhadrachalam, Liang-Chieh Ma, Choong-Un Kim, Seong Jin Koh
Nature Nanotechnology
October 2008
Vol.: 3, 603 - 608
DOI: 10.1038/nnano.2008.267

 
© 2007 Template feito por Templates para Voc�